Data as a Service
Development Handbook

vli.5
February 2016

Contents

Data as a Service Development 1
DataasaServiceciiiiiiiii e 1
AccessandIntegrateData, 1
RESTIUl APL. .o e e e 1
Development Kitso i ittt e 2
Intended Audience it 2
Helpand Support ... e e 3
APIConfigurationttt iiiinnnnnnns 4
Authentication. ... e i e 4
OVEIVIBW . .ttt e e e e e e 4
HelloWorld Examples.o e e 4
Public and Private APl Keys.o 5
Authentication Header. i i, 5
Time-stamping Requests.ttt 5
Signinga Request e e 6
Authentication Examples.ottt ittt e 7
Temporary ACCESS TOKENS.t it e e e 8
Troubleshooting Signature Errors. 9
Query String Requests as a Signing Alternative 9
Rate limiting. e 10
OV VIBW . i e e e e 10
HTTP Headers and Response Codescvviiiiinnnnnnn. 10
Correlation support.t e 11
Paging e 12
GlobalRoutescciiiiiiiinnnnnnnrnsnnnnnnnnns 13
Application Relation Type oo oottt 13
RequestDetails e 13
Resource URL. i e e e 13
Resource Verb e 13
Route Parameters i 13
Query String Parameters. i e 13
Sample Request.ot e e 13
Sequence Diagram e e 14
Object Model Diagram. ...t e e e 15
Sample RESPONSE .. oottt e e e e 15
Content Silo.ot e 18
RequestDetails . ..o i ittt ettt 18

Data as a Service Development Handbook

ResoUrce URL. . ..ot e e e e e e e et e 18

Resource Verb ... 18
Route Parameters e e 18
Query String Parameters. i 18
Sample Request. e 18
Sequence Diagram i e e 18
Object Model Diagram. 19
Sample ReSPONSeo e e 19
Token Authentication—Create Token, 25
RequestDetails e e 25
Resource URL. ... e et i e e e eeenas 25
Resource Verbo e e 25
Route Parameters ... e 25
Query String Parameters. i 25
Sample Request. e 25
Sequence Diagramc.. i e e e 26
Object Model Diagram. e 27
Sample RESPONSE e 27
Token Authentication—Delete Token 28
RequestDetails i e 28
Resource URL. ...t e i et e e aaaas 28
Resource Verbo e e 28
Route Parameters 28
Query String Parameters. 28
Sample Request. e 28
Sequence Diagram 29
Object Model Diagram. oii i e e 30
Sample RESPONSE ...t e 30
ErrorCodesciiiiiinnnnnnnnnnnnnnnnnnnnnnnns 31
Data as a Service ErrorCodes. 31

©MOTOR Information Systems, a Hearst Business Media Company

No part of this document may be produced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose without the
express written permission of MOTOR Information Systems.

Data as a Service Development Handbook

Data as a Service Development

Data as a Service

Access and Integrate Data

Data as a Service is a gateway to the automotive data produced by MOTOR. Using
these web services, MOTOR data may be easily integrated into other applications
without the effort associated with maintaining and updating data.

Data as a Service web service products include:

e Component Locations

* Diagnostic Trouble Codes
» Estimated Work Times

* Fluids

* Maintenance Schedules

* Part Vector lllustrations

* Parts

 Service Procedures

* Specifications

* Technical Service Bulletins
* Wiring Diagrams

¢ Vehicle ldentification and Premium Options

RESTful API

MOTOR web services adhere to the RESTful (REpresentational State Transfer) API
principles. These include a base URL, a defined Internet media type for the data,
standard HTT P methods, and hypertext links.

The API is designed using plural nouns to highlight collections and to make the URL
read like a sentence. The HTTP verb usage is designed using idempotency, meaning
that the result will be the same, independent of the number of times the call is
executed. According to the HTTP 1.1 specification GET, HEAD, PUT, and DELETE are all
idempotent.

The API uses the following best practices:

* Error codes —The error codes correlate with the HTTP status code. When
errors are generated in the API, the HTTP status code will match up with
the error. For example, if the request is malformed, a Bad Request error
will be displayed, with the HTTP status code 400.

* Version —The version of the APl is included near the beginning of the URL,
ensuring the user is aware of the API version and to prevent a request
being moved to a new version of the APl without the user’s knowledge.

Data as a Service Development Handbook 1

Data as a Service Development—Development Kits

* Paging —In some of the collections, the amount of data in the response
may be large and difficult to manage. To resolve this, the API includes the
ability to request specific pages of data.

* Multiple formats —The API uses a pure RESTful way to allow the user to
specify in which format the response should be returned. This is done by
using the Accept header to pass the type. If nothing is specified, XML will
be used as the default response language.

Development Kits

To assist application developers in using Data as a Service, MOTOR created
Development Kits. The Development Kits include documentation and developer

resources that are necessary to develop applications using the MOTOR web services.

The typical development kit includes:

* Development Handbook - Provides information on the API configurations
that are required to use the web services and global principles that are
required for all web services. Topics covered in the Handbook include:

=

g 8 8 8 3§

Authentication information
Rate limiting

HTTP authorization header
Correlation support

MOTOR and VCdb standards
Error Codes

* API References - There is an APl Reference for each product offered as
Data as a Service. The API Reference contains detailed information about
the web services included in each product, including:

=

g & & & 4 30

Request details

Resource URL

Route parameters

Query string parameters

Sequence and object model diagrams
Sample requests

Sample responses in XML.

Note: Examples of the XML responses are provided for reference. They
are examples only and the data contained within the responses may have
been changed since the publication of this document.

Intended Audience

The contents of this document and other documents included in the Development Kit
are technical in nature and therefore intended for a developer. These documents are
written for an audience that understands web programming and is familiar with

Data as a Service Development Handbook 2

Data as a Service Development—Help and Support

consuming information via web services through HTTP Rest requests.
It is assumed that a developer is familiar with:

* RESTful web services
* Object oriented programming concepts

e HTTP verbs and how they are used (Create = POST, Retrieve = GET, Update
= PUT, Delete = DELETE)

HTTP message construction and general knowledge of HTTP headers and
standards

Stateless and cacheable programming
* Identifying the relationships between resources
* Secure Socket Layer (SSL) programming

Help and Support

For support with Data as a Service development, or to obtain your API key, contact the
customer service team:

By email: accountservices@motor.com

By website: support.motor.com

An account is required to request support via the web. If you do not have an account,
visit support.motor.com and create an account.

Data as a Service Development Handbook 3

accountservices@motor.com
mailto:accountservices@motor.com
http://support.motor.com

API Configuration

Authentication

Overview

Authentication is required to gain access to MOTOR web services. The process of
authentication will prove your identity to the web services, which will grant you access
to the Data as a Service products.

Authentication information must be provided on every request. The web services do not
maintain session information. Following RESTful best practices, the services are
stateless. Each request must be signed with an appropriate HTTP request header.

When a request is received by the MOTOR Web Services it will rebuild the signature
based on the HTTP headers and information that the system expected to receive in a
request. The two signatures are compared and if the signhature provided matches the
expected signature, the user has properly authenticated and has access to the system.
If the signatures do not match the request, the request is terminated. The error HTTP
'401 Unauthorized' status code will be displayed, accompanied with a custom error
code in the response body.

The request signing process uses a keyed Hash Message Authentication Code (HMAC)
and a custom HTTP scheme. The MOTOR web services support a custom scheme of
'Shared' which tells the MOTOR web services that you are authenticating via a shared
public and private key.

Example of an Authenticated REST Request:

GET https://api.motor.com/v1l/HelloWorld HTTP/1.1
Host: api.motor.com

Date: Thu, 02 Apr 2015 18:25:10 GMT

Authorization: Shared
example:4FH6ntrovwSKpgC8Q50bwVsLeQ3NahP3nIGUMIBwDo I =

Note: Prior versions of the API allowed for a third authentication scheme of ‘MWS’ to
be used. This was based off a keyed-SHA256 hashing algorithm. This scheme is no
longer supported but is maintained for backwards compatibility. Any clients using the
‘MWS’ authentication scheme must start using the ‘Shared’ authentication scheme.

HelloWorld Examples

To assist developers in accessing the web services, there are HelloWorld examples in
multiple languages available on the MOTOR web site. See http://www.motor.com/
products/data-as-a-service/.

Data as a Service Development Handbook 4

http://www.motor.com/products/data-as-a-service/
http://www.motor.com/products/data-as-a-service/

API Configuration—Authentication

Public and Private API Keys

To access MOTOR web services public and private APl keys are required. The public key
is your public identity, similar to a user name. The private key is similar to a password
and is used to signh requests. The private key is never transmitted during web service
requests. Keep the API keys private and do not distribute them.

Authentication Header

The MOTOR web services use an HTTP authorization header to supply authentication
information and a signature on each request. Note that “Authorization” is the name of
the header.

Example of a valid authorization header

Authorization: Shared PublicKey:Signature

Time-stamping Requests
Every request to the MOTOR web services requires a valid time stamp. A time stamp

can be provided in the standard HTTP 'Date' Header or by using a custom 'X-Date' HTTP
Header.

The time stamp provided must be in one of the RFC 2616 formats (http://www.ietf.or
rfc/rfc2616.txt). A time stamp can also be supplied in the 'xdate' query string variable.
If this method is used the time stamp must be a UNIX Epoch time stamp (http://
en.wikipedia.org/wiki/Unix_time) rather than a formatted date string. All dates
supplied are assumed to be in UTC time unless specified with the UTC offset.

The first properly formatted time stamp that is used will override any other time stamp
provided on the request, with precedence given in the following order:

* Query string epoch using the 'xdate' parameter

* Custom 'X-Date' HTTP Header

e Standard HTTP 'Date' header
The time stamp that is used in a request must exactly match the time stamp used in
generating the authentication signature.

The time stamp provided must fall within 15 minutes plus or minus of the server time

of the web services. If the time stamp provided falls outside of this range the request

will be denied access and responded with an HTTP 403 Forbidden response. This is to
prevent against Replay Attacks (http://en.wikipedia.org/wiki/Replay_attack).

Data as a Service Development Handbook 5

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Replay_attack

API Configuration—Authentication

Supported Data Formats

Mon, 15 Jun 2015 15:00:54 GMT Mon, 15-Jun-15 15:00:54 GMT
Mon, 15 Jun 2015 15:00:54 UTC Mon, 15-Jun-15 15:00:54 UTC
Mon, 15 Jun 2015 15:00:54 UT Mon, 15-Jun-15 15:00:54 UT
Mon, 15 Jun 2015 15:00:54 Mon, 15-Jun-15 15:00:54

Mon, 15 Jun 2015 11:00:54 -0400 Mon, 15-Jun-15 11:00:54 -0400
Mon, 15 Jun 2015 11:00:54 -04:00 Mon, 15-Jun-15 11:00:54 -04:00
Mon Jun 15 15:00:54 2015

Signing a Request
The public and private APl keys are required to build the request signature. To create
the signature, build the Signature Data string to sign the request. This string contains
information about the request and will be used to generate the signature. The
Signature Data is built using the following HTTP request information:

Public Key Your public key (case sensitive).

HTTP Verb GET, POST, PUT, DELETE

Time stamp The time stamp of the request, converted to a UNIX epoch.
URI Path The entire path portion of the URI in the request. This must

exactly match the URI path on the HTTP request, including case
sensitivity. It must start with a leading ‘/’ character and include
everything after the host and port. It should not include the query
string portion of the URI or the separating ‘?’ character.

Example:

https://api.motor.com/v1l/Information/YMME/
Years?min=1990

Use:

/vl/Information/YMME/Years

Data as a Service Development Handbook 6

https://api.motor.com/v1/Information/YMME/Years?min=1990
https://api.motor.com/v1/Information/YMME/Years?min=1990

API Configuration—Authentication

Example of a valid authorization header

The following is an example of the steps required to generate the Authorization header
(this code is provided as a sample only):

Authentication Examples

The following are provided as examples only:

Example APl Key Credentials

Public Key L6yPPubKey

Private Key 90PolbjdUdhY9HmMfrin7JoEVo

Example GET Request

Example Signature Data

Example Authentication Header

The example below creates an authorization header by using the (non-working)
credentials and Epoch from the table. In a real world request, use the assigned public
key, private key, and the current Epoch at the time of request.

Parameter Value

Publickey Rg8SYj4nXt

PrivateKey Ru33Qm24SWAcd7rMxjzatVVz2

UTC DateTime / Epoch DateTime: Thu, 31 Jul 2014 16:41:30 GMT
EPOCH: 1406824890

~

Data as a Service Development Handbook

API Configuration—Authentication

Temporary Access Tokens

Temporary access tokens can be used in place of a private APl key. They provide
greater security since the private key is not stored on or used by the client to access
the services. Also, the token is only valid for a fixed amount of time before expiring,
providing additional security.

Generating an Access Token

To generate a temporary access token, you will need a public and private key to access
the token service. Both keys will be sent from National Accounts Service to new DaaS
customers. If you do not have your public or private key, contact
accountservices@motor.com.

To generate a temporary access token, create a request signature using your public

and private key to call the token service. See Token Authentication—Create Token on
page 25.) After retrieving the temporary token, change the authentication scheme in
the Authorization header to Token.

The sequence diagram illustrates the sequence of service calls to generate a
temporary access token and use that token in future requests. It also includes an
optional call to revoke the token. It is not necessary to revoke temporary access tokens
since they will expire at a fixed time, however if a token has been created but will not
be used, it is best practice to revoke it.

Client Side Code Server Side Code MWS

POSThttps://api.motor.comfv1/Token HTTRf1.1
Date: Tue, 06 Oct 2015 13:21:05 GMT
Authorization: Shared <publickey=:<signatureGenerated WIthPrivatekey>

IssueToken()
.

POST https://api.motor.comfvlToken
.

Y

MWSTokenRs

<MWSTokenRsxmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<Body>
<Token=>YtF92XUDnrFFBwS]AihukNZU4< Token=
<CreatedOn=2015-10-06T13:21:04.947Z<Created On=
<ExpiresOn=>2015-10-06T23:21:04.947Z < /ExpiresOnz=
</Body=
<fMWSTokenRs =

GEThttps:/fapi.motor.comfv1fInformationf/YMME/Years HTTR11
Date: Tue, 06 Oct 2015 13:21:05 GMTAuthorization: Token
<publickey =:<signatureGenerated WihToken=

(&ll future requests) GET https:{fapi.motor.com/v1/InformationMME/ears
.

A

<<returnzz

DELETEhttps:/fapi.motor.com/fv1/Token HTTRf11
Date: Tue, 06 Oct 2015 13:25:52 GMT
Authorization: Token <publickey=:<signatureGeneratedWihToken=

DELETE https:/fapi.motor.comfvlToken
.

A

MWSTokenRs

<MWSTokenRsxmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<Header>
<Date>Tue, 06 Oct 2015 13:25:52 GMT</Date>
<Messages [>
<5tatus =0k </Status=
<5tatusCode=200</StatusCode=
<fHeader= 8
<fMWSTokenRs =

accountservices@motor.com

API Configuration—Authentication

Troubleshooting Signature Errors

If you receive a response status code of 401 Unauthorized, your signature could not be
verified. The body of the request will contain a response header message with one or
more error codes that can help identify why the authorization was denied. The example
below is an example of a response with a response message.

Query String Requests as a Signing Alternative

Another option for authentication is to provide the authentication information in the
query string parameters. This is useful when you do not have the ability to proxy the
requests from 3rd party applications such as web browsers.

ApiKey Your public key (case sensitive).

Sig The URL encoding of the Base64 encoding of the HMAC-SHA256
of the Signature Data.

Scheme The MOTOR web services support a custom scheme of ‘Shared’
which tells the MOTOR web services that you are authenticating
via a shared public and private key.

XDate The time stamp of the request converted to a UNIX epoch. This
must exactly match the value used to generate your request
sighature.

The following example illustrates the steps required to generate the signature.

Note the URL encoding of the signature data, it is different from using the HTTP
authorization header because encoding is not needed in the header data.

The Signature Data is Base64 encoded into simple ASCII string characters such as the
plus (+), forward slash (/), and equals (=). If the Base64 encoded signature includes a
plus (+) sign, encode it as %2B in the request. Encode a forward slash (/) as %2F, and
the equal sign (=) as %3D.

Data as a Service Development Handbook 9

API Configuration—Rate limiting

Example GET Request using Query String Signatures

Rate limiting

Overview

Rate limiting controls the number of requests that a user can make during a specific
amount of time using their access token. This is a control method that prevents the
web services from being overwhelmed by requests, either legitimate or of a malicious
nature.

Each user access token is granted 1500 requests per 15 minutes. If the rate limit for
an access token is exceeded in the 15-minute window, the user will receive the error
code 429 Too Many Requests.

HTTP Headers and Response Codes

A user can identify the current state of their rate limit using the HTTP header. The rate
limiting headers are contextual and represent the current state of rate limiting for the
access token that is used in the request.

Use the information in the headers to ensure requests do not exceed the rate limit:

Parameter Value

X-Rate-Limit-Limit The total number of requests allowed for the given
access token.

X-Rate-Limit-Remaining The number of requests that are left for the given
access token within the 15 minute window.

X-Rate-Limit-Reset The remaining window before the rate limit resets in
UNIX epoch seconds.

Request Example

HTTP Response

Data as a Service Development Handbook 10

http://api.motor.com/v1/Getting/Started/HelloWorld

API Configuration—Correlation support

Correlation support

Correlation support is a method of identifying each request with a specific ID and
including that ID in the return response.

The user can provide a specific string with the request. That unique string will be
included in the return response from the API. This allows the request and response
messages to be linked for easy identification.

Correlation support is handled in the HTTP Request/Response Headers. The
correlation ID may be any length and may contain any alphanumeric character. The
correlation ID is specified in the request header by using the ID: X-CorrelationlID.

If your application cannot write to a request header, use the query string
“xcorrelationid” instead of the response header.

For example:

Example HTTP Request & Response

In this example, the HelloWorld web service is called, using the X-CorrelationID
123456-AA:

The response is:

[N

Data as a Service Development Handbook 1

API Configuration—Paging

Paging

Responses may contain a large number of records, which could be difficult to interpret
unless the records are separated into pages. Paging allows you to specify the number
of items per page in a response.

The query parameter ItemsPerPage allows you to specify the number of items returned
on each page.

An example request with paging;:

/Information/Vehicles/Attributes/BaseVehiclelD/22123/Content/Summaries/
Of/EstimatedWorkTimes? ContentSilos=28&Include=U&IltemsPerPage=10&Page

Index=2&AttributeStandard=MOTOR

Data as a Service Development Handbook 12

Global Routes

Application Relation Type

Request Details

The AppRelationType service is used across DaaS products with the exception of
Vehicle ldentification.

This service returns a list of application relation type mappings categorized by content data
type. The application relation type IDs can be used as a comma separated list to filter all
summary and taxonomy services.

Resource URL
/Information/Content/Details/Of/AppRelationTypes

Resource Verb
GET

Route Parameters
N/A

Query String Parameters
N/A

Sample Request
/Information/Content/Details/Of/AppRelationTypes

Data as a Service Development Handbook 13

Global Routes—Application Relation Type

Sequence Diagram

- e Reqm!?t
Processing
T
GET https://api.motor.comfv1/Information/Content/Details/Of/AppRelationTypes HTTR/L1
Date: Tue, 06 Oct 2015 18:00:41 GMT
Accept: text/xml
Authorization: <scheme> <publickey>:<signature>
Host: api.motoroom
Sends Http Request I
» |
Process Request

<<returnzz

<<return=> MWSAppRelationsTypeMappingRs

HTTPf1.1 200 OK

Content-Type: text/xml

Date: Tue, 06 Oct 2015 18:00:41 GMT
Content-Length: 6512

<7ml version="1.0"?>
<MWSAppRelationsTypeMappingRs xmins:xsi="http:/fwww.w3.0rg/2001/XML Schema-instance”
xmins:xsd="http:/fwww.w3.0rg/2001/XMLSchema">
<Body>
<AppRelationTypeMappings=
<ApplicationRelationTypeMapping=
<AppRelationTypes=
<ApplicationRelationType=
<ID=>35</ID>
<Type=Supported By</Type=
<fApplicationRelationType=
<fAppRelationTypes=
<ContentDataType>=BoschWiringDiagrams </ContentDataType
<fApplicationRelationTypeMapping=
<ApplicationRelationTypeMapping=
<AppRelationTypes=
<ApplicationRelationType=
<ID=>35</ID>
<Type=Supported By</Type=
<fApplicationRelationType=

X X

Data as a Service Development Handbook

14

Global Routes—Application Relation Type

Object Model Diagram

? IResponse ResponseHeader A ResponseMessageType A
{) Class Enum
il K& Header | 2 T e
i Generic Abstract Class
HE=1 T = Properties Debug
& Properties & Date: string Info X
& Body:B K& Status: string Warning
i & StatusCode: int Error
iy
F Paginglnfo F Type
PageResponse A
Class n Y] FY
] T F
Class
= Properties # Messages : List<ResponseMessage> o 7
& Endlndex:int = Properties
F ItemsPerPag_e: int & Code:string
& Startndex: int _ & LongDescription : string
& TotaltermCount : int & ShortDescription : string
MWSAppRelationsTypeMappingR ¥ ApplicationRelationTypeMappingContainer ¥
Class Class
+ Applicati ionTyp ingCortai

F# AppRelationTypeMappings : List<ApplicationRelationTypeMapping >

ApplicationRelationTypeMapping A
Class

= Properties
& ContentDataType: string

& AppRelationTypes : List<ApplicationRelationType>

ApplicationRelationType A
Class
= Properties

& ID:int

K Type:string

Sample Response

15

Data as a Service Development Handbook

Global Routes—Application Relation Type

Data as a Service Development Handbook

Global Routes—Application Relation Type

Data as a Service Development Handbook

Global Routes—Content Silo

Content Silo

Request Details

The Content Silo service is used with most DaaS products. This service returns a list of
content silos. Content silos are a category of data by which you can filter results.

Resource URL
/Information/Content/Details/0f/ContentSilos

Resource Verb
GET

Route Parameters
N/A

Query String Parameters
N/A

Sample Request
/Information/Content/Details/0f/ContentSilos

Sequence Diagram

- e roc “e§t
Processing

GET https://api.motor.comfv1/Information/Content/Details/0f/ContentSlos HTTR1.1
Date: Tue, 06 Oct 2015 16:34:33 GMT

Accept: text/xml

Authorization: <scheme> <publickey>:<signature>

Host: api.motoroom

|
Sends Http Request |
.

Process Request

<<returnzz

<<return=> MWSContentSiloMappingRs

HTTPf1.1 200 OK

Content-Type: text/xml

Date: Tue, 06 Oct 2015 16:34:32 GMT
Content-Length: 24079

<7ml version="1.0"?>
<MWSContentSiloMappingRs xmins:xsd="http:/fwww.w3.0rg/2001/XMLSchema" xmins :xsi="http:/fwww.w3.0rg/2001/XML Schema-instance"=
<Body>
<ContentSiloMappings:=
<ContentSiloMapping:=
<ContentDataType>=BoschWiringDiagrams </ContentDataType
<ContentSilos:>
<ContentSilox
<ID=>56</ID>
<MName=Wiring Diagrams</Name=
<fContentSilox
<ContentSilox
<ID=>57</ID>
<MName>Bosch Wiring Diagrams </Name>
<fContentSilox
<fContentSilos>
<fContentSiloMapping:=
<ContentSiloMapping:=
<ContentDataType>ComponentLocations</ContentData Type:=

Data as a Service Development Handbook

18

Global Routes—Content Silo

Object Model Diagram

'ResponseHeader & | 'ResponseMessage & |
Class F Messages : List<ResponseMessage> Class
i 7 a 4
E] Properties E] Properties
& Date:string IResponse & Code:string
& Status: string K Header J’_mm;eqﬂb R # LongDescription : string
& StatusCode: int r i GenericAbstract Class & ShortDescription : string
J 7 7
C] Properties
F# Paginglnfo
| & Bow:B 2
0 . ., Type
PageResponse ol |
Class A
55 T ResponseMessageType
Enum
= Properties .a
& Endlndex:int Debug
K TtemsPerPage: int mﬂmﬂs ¥ | Info
& Startlndex: int Class Warning
& TotalltemCount : int +Respo se<ContentSi ppingCortai Error
- & : !
ContentSiloMappi iner W) Sc Sil
Pping Class
] E] Properties
¥ ContentSiloMappings : List<ContentSiloMappi & Lnin
: Liste >
ntentSiloMappings : Li ntentSiloMapping P Nismeosiing
e] o | ¥ SourceSilos: List<SourceSilo>
Class '
B Properiics ContentSilo
Class
& ContentDataType: string :
E] Properties
& ID:int
& ContentSilos : List<ContentSilo> & Mame: string

Sample Response

Data as a Service Development Handbook 19

Global Routes—Content Silo

Data as a Service Development Handbook

Global Routes—Content Silo

Data as a Service Development Handbook

Global Routes—Content Silo

Data as a Service Development Handbook

Global Routes—Content Silo

Data as a Service Development Handbook

Global Routes—Content Silo

Data as a Service Development Handbook

Global Routes—Token Authentication—Create Token

Token Authentication—Create Token

Request Details

The Token Authentication service is used across DaaS products. See Temporary Access
Tokens on page 8 for additional information.

This service creates a new temporary token that can be used in place of the a private
key for generating the authentication signature. Future requests made with a
temporary access token must be used in conjunction with the authentication scheme
of the token.

Resource URL

api.motor.com/v1l/Token

Resource Verb
POST

Route Parameters
N/A

Query String Parameters
N/A

Sample Request
POST https://api.motor.com/v1/Token

Data as a Service Development Handbook 25

Global Routes—Token Authentication—Create Token

Sequence Diagram

- e roc HE?t
Processing

POST https:/fapi.motor.com/v1/Token HTTRf1.1
Date: Tue, 06 Oct 2015 13:21:05 GMT

Accept: text/xml

Authorization: <scheme> <publickey>:<signature>
Host: api.motoroom

Content-Length: 0

|
SendsHttp Request |
.

Process Request

<<returnzz
R
<<returnz> MWSTokenRs

HTTR{1.1 201 Created

Content-Type: text/xml

Date: Tue, 06 Oct 2015 13:21:05 GMT
Content-Length: 477

<7ml version="1.0"?>

<Body>
<Token=>YtF92XUDnrFFBwSIAihukNZU4< Token=
<CreatedOn=2015-10-06T13:21:04.947Z<Created On=
<ExpiresOn=>2015-10-06T23:21:04.947Z < /ExpiresOnz=

</Body=

<Header>
<Date>Tue, 06 Oct 2015 13:21:05 GMT</Date>
<Messages [>
<5Status =Created </Status=
<5StatusCode=201</StatusCode=

<fHeader=

<fMWSTokenRs =

<MWSTokenRs xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmins:xsd="http:/fwww.w3.0rg/200 1/ XML Schema">

Data as a Service Development Handbook

26

Object Model Diagram

Global Routes—Token Authentication—Create Token

? IResponse ResponseHeader A ResponseMessageType &
{ ResponseBase<B= Al gass T 2
Generic Abstract Class ’ Header
| = T = Properties Debug
= Properties & Date e i
& K Status Warning
i Y & StatusCode Brror
P
& Paginglnfo F Type
PageResponse A
Class .
=1 T 8 B X
_ ’ M Class
= Properties g = T
& Endlndex = Properties
F ItemsPerPage & Code
& Startlndex & LongDescription
& TotalternCount) & ShortDescription
MWSTokenRs A AccessToken A
Class Class

—+ ResponseBase< AccessTokens

= Properties
& CreatedOn

Sample Response

K ExpiresOn
A Token

Data as a Service Development Handbook

Global Routes—Token Authentication—Delete Token

Token Authentication—Delete Token

Request Details

The Token Authentication service is used across DaaS products. See Temporary Access
Tokens on page 8 for additional information.

This service removes a temporary access token. The signature used in this request
must be made with the token that is being removed.

Note: If the token being removed has expired or is no longer in the system a response
code of 401 (Unauthorized) will be issued along with a MOTOR Web Services error
code 401.000052.

Resource URL
api.motor.com/v1l/Token

Resource Verb
DELETE

Route Parameters
N/A

Query String Parameters
N/A

Sample Request
DELETE https://api.motor.com/v1/Token

Data as a Service Development Handbook 28

Global Routes—Token Authentication—Delete Token

Sequence Diagram

- e roc HE?t
Processing

POST https:/fapi.motor.com/v1/Token HTTRf1.1
Date: Tue, 06 Oct 2015 13:21:05 GMT

Accept: text/xml

Authorization: <scheme> <publickey>:<signature>
Host: api.motoroom

Content-Length: 0

|
SendsHttp Request |
.

Process Request

<<returnzz
R
<<returnz> MWSTokenRs

HTTR{1.1 201 Created

Content-Type: text/xml

Date: Tue, 06 Oct 2015 13:21:05 GMT
Content-Length: 477

<7ml version="1.0"?>

<Body>
<Token=>YtF92XUDnrFFBwSIAihukNZU4< Token=
<CreatedOn=2015-10-06T13:21:04.947Z<Created On=
<ExpiresOn=>2015-10-06T23:21:04.947Z < /ExpiresOnz=

</Body=

<Header>
<Date>Tue, 06 Oct 2015 13:21:05 GMT</Date>
<Messages [>
<5Status =Created </Status=
<5StatusCode=201</StatusCode=

<fHeader=

<fMWSTokenRs =

<MWSTokenRs xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmins:xsd="http:/fwww.w3.0rg/200 1/ XML Schema">

X X X

Data as a Service Development Handbook

29

Object Model Diagram

Global Routes—Token Authentication—Delete Token

? IResponse ResponseHeader A ResponseMessageType &
{ ResponseBase<B= Al gass T 2
Generic Abstract Class ’ Header
| = T = Properties Debug
= Properties & Date e i
& K Status Warning
i Y & StatusCode Brror
P
& Paginglnfo F Type
PageResponse A
Class .
=1 T 8 B X
_ ’ M Class
= Properties g = T
& Endlndex = Properties
F ItemsPerPage & Code
& Startlndex & LongDescription
& TotalternCount) & ShortDescription
MWSTokenRs A AccessToken A
Class Class

—+ ResponseBase< AccessTokens

= Properties
& CreatedOn

Sample Response

K ExpiresOn
A Token

Data as a Service Development Handbook

Data as a Service Error Codes

Error Codes

Code Short Description Reason

200.000201 | Service Resource Deprecated This service resource has been deprecated.

200.000202 | MWS Auth Scheme Deprecated The authentication scheme 'MWS' is
deprecated. Please switch to the ‘Shared' auth
scheme and corresponding HMAC-SHA256
Signature method.

400.000054 | Password Required Please specify a Password

400.000055 | Invalid Password Password must be between 1 and 32
characters

400.000056 | User Name Required Please specify a User Name.

400.000057 | Invalid User Name User Name must be between 7 and 100
characters.

400.000058 Invalid Public Key Public Key must be 10 characters.

400.000059 | Public Key Required Please specify a Public Key.

400.000151 | Invalid XML Request The following issue was encountered on the
incoming XML request: {0}

400.000152 | Invalid JSON Request The following issue was encountered on the
incoming JSON request: {0}

400.000153 | Invalid BSON Request The following issue was encountered on the
incoming BSON request: {0}

400.000154 | Too Many Multipart Content Too many Multipart Content Items have been

Items provided. Your request cannot exceed {0}

items.

400.000155 Invalid Request The request was null.

400.000156 | Invalid Property Format {0}

400.010001 | Invalid Page Index The Page Index cannot be less than 0.

400.010002 | Invalid Items Per Page The ItemsPerPage used in the paging request
must be between 0 and 30. A default of 30 will
be used if unspecified or zero(0) is specified.

400.100001 | Invalid Application ID The Application ID cannot be negative.

400.100005 Invalid Content Types Please ensure all Content Types are valid.

400.100006 Invalid Query Filter Type The Query Filter Type must be one of the

following: 'RelatedTo', ‘Matching'.

Data as a Service Development Handbook 31

Error Codes—Data as a Service Error Codes

400.100007 Invalid Relation Types Please specify a valid Relation Type or
multiple types. Use an comma (,) to separate
multiple types.

400.100008 | Content Type Required Please provide a valid content type

400.100009 | Application ID Required The Application ID is required

400.100012 | Invalid Search Term The Search Term can not exceed 255
characters in length.

400.100013 | Invalid Content Data Type Content Type must be one of the following:
{0}

400.100014 | Invalid Part Terminology ID Please specify a valid PartTerminologyID

400.100501 Invalid Severity Severity must be one of the following: 'All’,
‘Severe', '‘Normal'.

400.110001 Invalid Vehicle Year Please specify a valid four digit year.

400.110002 Invalid Make ID Please specify a valid Make ID.

400.110003 Invalid Model 1D Please specify a valid Model ID.

400.110004 | Invalid VIN Please specify a valid VIN consisting of at
least 3 and not more than 17 alphanumeric
characters.

400.110005 | Invalid Vehicle ID Please specify a valid Vehicle ID

400.110051 Invalid Attribute ID Attribute 1D is required and must be greater
than zero.

400.110052 | Invalid Attribute Type Attribute Type must be one of the following:
{0}.

400.110053 Invalid Attribute Standard Attribute Standard must be one of the
following: {0}.

400.110054 | Invalid Wheel Base 1D The Wheel Base ID cannot be negative.

400.110055 | Invalid Transmission ID The Transmission ID cannot be negative.

400.110056 Invalid Sub Model ID The Sub Model ID cannot be negative.

400.110057 Invalid Steering 1D The Steering ID cannot be negative.

400.110058 | Invalid Spring ID The Spring ID cannot be negative.

400.110059 | Invalid Manufacturer Body Code The Manufacturer Body Code ID cannot be

ID negative.

400.110061 | Invalid Engine ID The Engine ID cannot be negative.

400.110062 | Invalid Drive Type ID The Drive Type ID cannot be negative.

400.110063 Invalid Country ID The Country ID cannot be negative.

400.110064 Invalid Cab Type ID The Cab Type ID cannot be negative.

400.110065 | Invalid Brake ID The Brake ID cannot be negative.

400.110066 | Invalid Body Style ID The Body Style ID cannot be negative.

Data as a Service Development Handbook

32

Error Codes—Data as a Service Error Codes

400.110067 Invalid Bed Type ID The Bed Type ID cannot be negative.

400.110068 | Invalid Axle Type ID The Axle Type ID cannot be negative.

400.110069 Invalid Min Year Value The Min Value cannot be less than 0 and must
be less than or equal to the Max Value.

400.110071 | Invalid Max Year Value The Max value cannot be less than 0 and must
be greater than or equal to the Min Value (0 =
No Max Specified).

400.110072 | Invalid Vehicle Attribute Lookup The vehicle attribute type is invalid.

Type

400.110073 | Submodel ID is Required Submodel ID is required when specifing a
base vehicle ID.

400.110074 | Country ID is Required Country ID is required when specifing a base
vehicle ID.

400.110075 | Invalid Vehicle Attribute The vehicle attribute {0} ({1}) is required and
must be greater than 0.

400.110076 | Invalid Attribute Standard From The supplied attribute standard to convert
from is invalid. Valid values are 'MOTOR'.

400.110077 | Invalid Attribute Standard From The supplied attribute standard to convert to is
invalid. Valid values are 'VCDB'.

400.120001 | Invalid Result Type The Result Type must be one of the following:
‘DrillDown’, 'List'.

400.120002 | System ID Required When specifying a Group ID you must also
specify the System ID.

400.120003 Group ID Required When specifying a Sub Group ID you must
also specify the Group ID.

400.120004 | Invalid System ID The System ID cannot be negative.

400.120005 | Invalid Group ID The Group ID cannot be negative.

400.120006 | Invalid Sub Group ID The Sub Group ID cannot be negative.

400.120007 | SAE Subject ID Required When specifying a SAE System ID you must
also specify the SAE Subject ID.

400.120008 Invalid SAE Subject ID The SAE Subject ID specified is invalid.

400.120009 Invalid SAE System ID The SAE System ID specified is invalid.

400.120011 | Invalid Auto System ID The Auto System ID cannot be negative.

400.120012 | SubSystem ID Required When specifying a SubSystem ID you must
also specify the SystemID.

400.120013 | Invalid Subject ID The SubSystem ID specified is invalid.

400.120014 | Invalid System ID The System ID specified is invalid.

400.120015 Invalid Taxonomy ID The Taxonomy ID specified is invalid.

400.120051 Invalid Include Flags One or more of the Include Flags is invalid.

Data as a Service Development Handbook

33

Error Codes—Data as a Service Error Codes

400.130001 | Invalid Document ID Document ID is invalid.

400.400001 | Invalid Cache Type Please specify a valid Cache Type.

401.000051 Invalid Authentication Invalid authentication.

401.000052 | Invalid Authentication Invalid authentication.

401.000053 | Invalid Authentication Invalid authentication.

401.000054 | Invalid Authentication Invalid authentication.

401.000055 | Invalid Authentication Query string signature placement is not
supported for this authentication scheme.

401.000056 Invalid Authentication Invalid authentication.

403.000101 Invalid Authorization Unauthorized access.

403.000102 Invalid Authorization Invalid authorization.

403.000103 | Invalid Authorization Resource not allowed.

403.000104 | Invalid Authorization Package not allowed.

403.000105 Invalid Authorization Access Expired.

403.000106 | Invalid Authorization Resource Access Expired.

403.000107 | Invalid Authorization SSL Required.

403.000108 | Inactive Account The account is currently inactive.

403.000109 | Inactive Organization The shop or company associated with this
account is currently inactive.

403.000111 | Invalid Authorization Invalid Authorization

403.000112 Invalid Authorization SSL Required for Api Key.

403.000162 | Invalid Authorization Request time too skewed.

403.000163 | Invalid Authorization Request time too skewed.

403.100001 | Invalid Account Account Expired

403.100002 | Invalid Account Organizations Expired

403.100003 Invalid Account Invalid Package Setup

403.100004 Invalid Account Packages Expired

405.000001 | Method Not Allowed The HTTP Method provided is not supported
on the matching service endpoint.

411.000001 | Length Required A Content-Length header is required when
sending a request entity to the server.

413.000001 | Request Entity Too Large The request entity sent to the server exceeded
the maximum size limit.

414.000001 | Request-URI Too Long The request URI exceeded the maximum size

limit.

Data as a Service Development Handbook 34

Error Codes—Data as a Service Error Codes

415.000156 | Multipart Content Required A Multipart content type is required by this
resource.

415.000158 | Content Type Not Supported Your request did not contain a supported
media type.

416.000001 | Requested Range Not Satisfiable | The page item specified exceeds the number
of pages available for the result range.

429.000001 | Too Many Requests The rate limit has been exceeded.

500.000001 | Unhandled Exception An unhandled exception has occurred.

501.000001 | Resource Not Implemented The resource you are trying to reach has not
been implemented.

502.000001 Bad Gateway The server received an invalid response from
an upstream server while trying to fulfill the
request.

503.200255 | Reporting Service Unavailable The reporting service is currently unavailable.

504.000001 | Gateway Timeout A request to an upstream server timed out

while attempting to fulfill the request.

Data as a Service Development Handbook

35

	Data as a Service Development Handbook
	Data as a Service Development
	Data as a Service
	Access and Integrate Data
	RESTful API

	Development Kits
	Intended Audience
	Help and Support

	API Configuration
	Authentication
	Overview
	Example of an Authenticated REST Request:

	HelloWorld Examples
	Public and Private API Keys
	Authentication Header
	Example of a valid authorization header

	Time-stamping Requests
	Supported Data Formats

	Signing a Request
	Authentication Examples
	Example API Key Credentials
	Example GET Request
	Example Signature Data
	Example Authentication Header

	Temporary Access Tokens
	Generating an Access Token

	Troubleshooting Signature Errors
	Query String Requests as a Signing Alternative
	Example GET Request using Query String Signatures

	Rate limiting
	Overview
	HTTP Headers and Response Codes
	Request Example
	HTTP Response

	Correlation support
	Example HTTP Request & Response

	Paging

	Global Routes
	Application Relation Type
	Request Details
	Resource URL
	Resource Verb
	Route Parameters
	Query String Parameters
	Sample Request
	Sequence Diagram
	Object Model Diagram
	Sample Response

	Content Silo
	Request Details
	Resource URL
	Resource Verb
	Route Parameters
	Query String Parameters
	Sample Request
	Sequence Diagram
	Object Model Diagram
	Sample Response

	Token Authentication—Create Token
	Request Details
	Resource URL
	Resource Verb
	Route Parameters
	Query String Parameters
	Sample Request
	Sequence Diagram
	Object Model Diagram
	Sample Response

	Token Authentication—Delete Token
	Request Details
	Resource URL
	Resource Verb
	Route Parameters
	Query String Parameters
	Sample Request
	Sequence Diagram
	Object Model Diagram
	Sample Response

	Error Codes
	Data as a Service Error Codes

